PLoS ONE (Jan 2023)

Antibody designing against IIIabc junction (JIIIabc) of HCV IRES through affinity maturation; RNA-Antibody docking and interaction analysis.

  • Saima Ejaz,
  • Rehan Zafar Paracha,
  • Sadaf Ejaz,
  • Zunera Jamal

DOI
https://doi.org/10.1371/journal.pone.0291213
Journal volume & issue
Vol. 18, no. 9
p. e0291213

Abstract

Read online

Hepatitis C virus is a single-stranded RNA based virus which can cause chronic HCV and hepatocellular carcinoma. HCV genotype 3a has relatively higher rate of fibrosis progression, prevalence of steatosis and incidence of HCC. Despite HCVs variation in genomic sequence, the 5' untranslated region containing internal ribosome entry site (IRES) is highly conserved among all genotypes. It is responsible for translation and initiation of the viral protein. In present study, IRES was targeted by designing variants of reported antigen binding fragment (Fab) through affinity maturation approach. Affinity maturation strategy allowed the rational antibody designing with better biophysical properties and antibody-antigen binding interactions. Complementarity determining regions of reported Fab (wild type) were assessed and docked with IRES. Best generated model of Fab was selected and subjected to alanine scanning Three sets of insilico mutations for variants (V) designing were selected; single (1-71), double (a-j) and triple (I-X). Redocking of IRES-Fab variants consequently enabled the discovery of three variants exhibiting better docking score as compared to the wild type Fab. V1, V39 and V4 exhibited docking scores of -446.51, -446.52 and-446.29 kcal/mol respectively which is better as compared to the wild type Fab that exhibited the docking score of -351.23 kcal/mol. Variants exhibiting better docking score were screened for aggregation propensity by assessing the aggregation prone regions in Fab structure. Total A3D scores of wild type Fab, V1, V4 and V39 were predicted as -315.325, -312.727, -316.967 and -317.545 respectively. It is manifested that solubility of V4 and V39 is comparable to wild type Fab. In future, development and invitro assessment of these promising Fab HCV3 variants is aimed.