Nuclear Engineering and Technology (Sep 2024)

Extended cognitive reliability and error analysis method for advanced control rooms of nuclear power plants

  • Xiaodan Zhang,
  • Shengyuan Yan,
  • Xin Liu

Journal volume & issue
Vol. 56, no. 9
pp. 3472 – 3482

Abstract

Read online

This study proposes a modified extended cognitive reliability and error analysis method (CREAM) for achieving a more accurate human error probability (HEP) in advanced control rooms. The traditional approach lacks failure data and does not consider the common performance condition (CPC) weights in different cognitive functions. The modified extended CREAM decomposes tasks using a method that combines structured information analysis (SIA) and the extended CREAM. The modified extended CREAM performs the weight analysis of CPCs in different cognitive functions, and the weights include cognitive, correlative, and important weights. We used the extended CREAM to obtain the cognitive weight. We determined the correlative weights of the CPCs for different cognitive functions using the triangular fuzzy decision-making trial and evaluation laboratory (TF-DEMATEL), and evaluated the importance weight of CPCs based on the interval 2-tuple linguistic approach and ensured the value of the importance weight using the entropy method in the different cognitive functions. Finally, we obtained the comprehensive weights of the different cognitive functions and calculated the HEPs. The accuracy and sensitivity of the modified extended CREAM were compared with those of the basic CREAM. The results demonstrate that the modified extended CREAM calculates the HEP more effectively in advanced control rooms.

Keywords