Energies (Oct 2020)

Integration of Large-Scale Variable Renewable Energy Sources into the Future European Power System: On the Curtailment Challenge

  • Chloi Syranidou,
  • Jochen Linssen,
  • Detlef Stolten,
  • Martin Robinius

DOI
https://doi.org/10.3390/en13205490
Journal volume & issue
Vol. 13, no. 20
p. 5490

Abstract

Read online

The future European power system is projected to rely heavily on variable renewable energy sources (VRES), primarily wind and solar generation. However, the difficulties inherent to storing the primary energy of these sources is expected to pose significant challenges in terms of their integration into the system. To account for the high variability of renewable energy sources VRES, a novel pan-European dispatch model with high spatio-temporal resolution including load shifting is introduced here, providing highly detailed information regarding renewable energy curtailments for all Europe, typically underestimated in studies of future systems. which also includes modeling of load shifting. The model consists of four separate levels with different approaches for modeling thermal generation flexibility, storage units and demand as well as with spatial resolutions and generation dispatch formulations. Applying the developed model for the future European power system follows the results of corresponding transmission expansion planning studies, which are translated into the desired high spatial resolution. The analysis of the “large scale-RES” scenario for 2050 shows considerable congestion between northern and central Europe, which constitutes the primary cause of VRES curtailments of renewables. In addition, load shifting is shown to mostly improve the integration of solar energy into the system and not wind, which constitutes the dominant energy source for this scenario. Finally, the analysis of the curtailments time series using ideal converters shows that the best locations for their exploitation can be found in western Ireland and western Denmark.

Keywords