Algorithms (Dec 2024)
Intelligent Fault Diagnosis for Rotating Mechanical Systems: An Improved Multiscale Fuzzy Entropy and Support Vector Machine Algorithm
Abstract
Rotating mechanical systems (RMSs) are widely applied in various industrial fields. Intelligent fault diagnosis technology plays a significant role in improving the reliability and safety of industrial equipment. A new algorithm based on improved multiscale fuzzy entropy and support vector machine (IMFE-SVM) is proposed for the automatic diagnosis of various fault types in elevator rotating mechanical systems. First, the empirical mode decomposition (EMD) method is utilized to construct a decomposition model of the vibration data for the extraction of relevant parameters related to the fault feature. Secondly, the improved multiscale fuzzy entropy (IMFE) model is employed, where the scale factor of the multiscale fuzzy entropy (MFE) is extended to multiple subsequences to resolve the problem of insufficient coarse granularity in the traditional MFE. Subsequently, linear discriminant analysis (LDA) is applied to reduce the dimensionality of the extracted features in order to overcome the problem of feature redundancy. Finally, a support vector machine (SVM) model is utilized to construct the optimal hyperplane for the diagnosis of fault types. Experimental results indicate that the proposed method outperforms other state-of-the-art methods in the fault diagnosis of elevator systems.
Keywords