Cell Reports (Jan 2021)

Large, Stable Spikes Exhibit Differential Broadening in Excitatory and Inhibitory Neocortical Boutons

  • Andreas Ritzau-Jost,
  • Timur Tsintsadze,
  • Martin Krueger,
  • Jonas Ader,
  • Ingo Bechmann,
  • Jens Eilers,
  • Boris Barbour,
  • Stephen M. Smith,
  • Stefan Hallermann

Journal volume & issue
Vol. 34, no. 2
p. 108612

Abstract

Read online

Summary: Presynaptic action potential spikes control neurotransmitter release and thus interneuronal communication. However, the properties and the dynamics of presynaptic spikes in the neocortex remain enigmatic because boutons in the neocortex are small and direct patch-clamp recordings have not been performed. Here, we report direct recordings from boutons of neocortical pyramidal neurons and interneurons. Our data reveal rapid and large presynaptic action potentials in layer 5 neurons and fast-spiking interneurons reliably propagating into axon collaterals. For in-depth analyses, we establish boutons of mature cultured neurons as models for excitatory neocortical boutons, demonstrating that the presynaptic spike amplitude is unaffected by potassium channels, homeostatic long-term plasticity, and high-frequency firing. In contrast to the stable amplitude, presynaptic spikes profoundly broaden during high-frequency firing in layer 5 pyramidal neurons, but not in fast-spiking interneurons. Thus, our data demonstrate large presynaptic spikes and fundamental differences between excitatory and inhibitory boutons in the neocortex.

Keywords