Neuroimage: Reports (Sep 2024)

Cortical thickness differences between hearing and perinatally deaf cats using ultra-high field MRI

  • Stephen G. Gordon,
  • Alessandra Sacco,
  • Stephen G. Lomber

Journal volume & issue
Vol. 4, no. 3
p. 100213

Abstract

Read online

In the absence of hearing, the plastic nature of the cerebral cortex allows select regions to be repurposed to serve the processing of remaining sensory modalities. This plasticity can be observed in many ways, including measuring the thickness differences of cortical gray matter between hearing and deaf populations to detect regional adaptations. In this study, T1-weighted images were acquired for hearing (n = 38) and perinatally-deafened (n = 31) cats using an ultra-high field 7T MRI scanner to identify normative feline cortical thickness, as well as areas of differing thickness between groups. Most significant changes to sensory-related regions demonstrated thicker cortices in the deaf compared to the hearing group, while specific non-sensory regions were found to be thinner. Furthermore, there was a modest lateralized component, finding that the gray matter of the left hemisphere was more susceptible to thickness changes following auditory deprivation. These results suggest distinct factors driving the adaptations in sensory versus non-sensory cortices in the brain following deafness, and reinforces the task-retainment model of crossmodal plasticity.

Keywords