Scientific Reports (Aug 2024)

Biomarker dosimetry of acute low level of thermal neutrons and radiation adaptive response effect on rats

  • Misara M. Awad,
  • Mahmoud H. Abdelgawad,
  • Eslam Aboelezz,
  • Khairy T. Ereiba

DOI
https://doi.org/10.1038/s41598-024-68640-z
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 16

Abstract

Read online

Abstract In this paper, we demonstrated the biological effects of acute low-dose neutrons on the whole body of rats and investigated the impact of that level of neutron dose to induce an in vivo radio-adaptive response. To understand the radio-adaptive response, the examined animals were exposed to acute neutron radiation doses of 5 and 10 mSv, followed by a 50 mSv challenge dose after 14 days. After irradiation, all groups receiving single and double doses were kept in cages for one day before sampling. The electron paramagnetic resonance (EPR) method was used to estimate the radiation-induced radicals in the blood, and some hematological parameters and lipid peroxidation (MDA) were determined. A comet assay was performed beside some of the antioxidant enzymes [catalase enzyme (CAT), superoxide dismutase (SOD), and glutathione (GSH)]. Seven groups of adult male rats were classified according to their dose of neutron exposure. Measurements of all studied markers are taken one week after harvesting, except for hematological markers, within 2 h. The results indicated lower production of antioxidant enzymes (CAT by 1.18–5.83%, SOD by 1.47–17.8%, and GSH by 11.3–82.1%). Additionally, there was an increase in red cell distribution width (RDW) (from 4.61 to 25.19%) and in comet assay parameters such as Tail Length, (from 6.16 to 10.81 µm), Tail Moment, (from 1.17 to 2.46 µm), and percentage of DNA in tail length (DNA%) (from 9.58 to 17.32%) in all groups exposed to acute doses of radiation ranging from 5 to 50 mSv, respectively. This emphasizes the ascending harmful effect with the increased acute thermal neutron doses. The values of the introduced factor of radio adaptive response for all markers under study reveal that the lower priming dose promotes a higher adaptation response and vice versa. Ultimately, the results indicate significant variations in DNA%, SOD enzyme levels, EPR intensity, total Hb concentration, and RDWs, suggesting their potential use as biomarkers for acute thermal neutron dosimetry. Further research is necessary to validate these measurements as biodosimetry for radiation exposure, including investigations involving the response impact of RAR with varied challenge doses and post-irradiation behavior.

Keywords