Cailiao gongcheng (Nov 2016)

Effect of ECAP and Heat-treatment on Pitting Corrosion Behavior of Industrial Pure Iron

  • ZHANG Liu-yan,
  • MA Ai-bin,
  • JIANG Jing-hua,
  • YU Hai-bin,
  • WU Hui-shu

DOI
https://doi.org/10.11868/j.issn.1001-4381.2016.11.011
Journal volume & issue
Vol. 44, no. 11
pp. 66 – 72

Abstract

Read online

In order to guide a reasonable application of the bulk ultrafine-grained industrial pure iron, a serious of ultrafine-grained pure iron samples with different microstructures were fabricated by multi-passes ECAP and heat-treatment, and their microstructures and pitting corrosion behaviour were investigated by transmission electron microscopy (TEM), electrochemical polarization and impedance spectroscopy (EIS) techniques, respectively. Results show that:with the increase of ECAP passes, lath-shaped structure with high dislocation density transforms into equiaxed grains with low dislocation density; the dislocation density decreases and the high-angle grain boundaries increase, after the annealing treatment. ECAP passes have less effect on the self-passivation of pure iron, and its open circuit potential (OCP) and polarization resistance are less changed; the pitting corrosion resistance of the ECAPed pure iron is related to the ECAP passes:the pitting potential first decreases and then increases with the increase of ECAP passes; the self-passivation property and pitting corrosion resistance of the ECAPed pure iron are improved after the annealing heat-treatment, the OCP, polarization resistance and pitting potential values increase obviously.

Keywords