Frontiers in Marine Science (Feb 2024)

Numerical simulation of bichromatic wave propagation based on the paddle- and modified mass source wave-maker methods

  • Zhou-Hao Zhang,
  • Hong-Sheng Zhang,
  • Peng-Bo Zheng,
  • Min-Yi Chen

DOI
https://doi.org/10.3389/fmars.2024.1287040
Journal volume & issue
Vol. 11

Abstract

Read online

A second-order numerical wave-maker is realized by combining the paddle wave-maker theory proposed by Schäffer for physical experiments with the Fluent software. The numerical results from the paddle wave-maker method are compared with the results from the modified mass source wave-maker method, the theoretical solutions, and the physical experimental data. The numerical model based on the paddle wave-maker method is verified, and the applicable scopes of the two wave-maker methods are discussed. The paddle wave-maker method is not suitable for bichromatic wave combinations that include shallow-water waves. However, within their common applicable range, the numerical results from the paddle wave-maker method are better than those from the modified mass source wave-maker method, at least for the grid divisions adopted in this study. The effects of the incident wave parameters on the nonlinear wave-wave interaction are also analyzed.

Keywords