Breast Cancer Research (May 2020)

Ultrafast dynamic contrast-enhanced breast MRI may generate prognostic imaging markers of breast cancer

  • Natsuko Onishi,
  • Meredith Sadinski,
  • Mary C. Hughes,
  • Eun Sook Ko,
  • Peter Gibbs,
  • Katherine M. Gallagher,
  • Maggie M. Fung,
  • Theodore J. Hunt,
  • Danny F. Martinez,
  • Amita Shukla-Dave,
  • Elizabeth A. Morris,
  • Elizabeth J. Sutton

DOI
https://doi.org/10.1186/s13058-020-01292-9
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Ultrafast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-derived kinetic parameters have demonstrated at least equivalent accuracy to standard DCE-MRI in differentiating malignant from benign breast lesions. However, it is unclear if they have any efficacy as prognostic imaging markers. The aim of this study was to investigate the relationship between ultrafast DCE-MRI-derived kinetic parameters and breast cancer characteristics. Methods Consecutive breast MRI examinations between February 2017 and January 2018 were retrospectively reviewed to determine those examinations that meet the following inclusion criteria: (1) BI-RADS 4–6 MRI performed on a 3T scanner with a 16-channel breast coil and (2) a hybrid clinical protocol with 15 phases of ultrafast DCE-MRI (temporal resolution of 2.7–4.6 s) followed by early and delayed phases of standard DCE-MRI. The study included 125 examinations with 142 biopsy-proven breast cancer lesions. Ultrafast DCE-MRI-derived kinetic parameters (maximum slope [MS] and bolus arrival time [BAT]) were calculated for the entire volume of each lesion. Comparisons of these parameters between different cancer characteristics were made using generalized estimating equations, accounting for the presence of multiple lesions per patient. All comparisons were exploratory and adjustment for multiple comparisons was not performed; P values < 0.05 were considered statistically significant. Results Significantly larger MS and shorter BAT were observed for invasive carcinoma than ductal carcinoma in situ (DCIS) (P < 0.001 and P = 0.008, respectively). Significantly shorter BAT was observed for invasive carcinomas with more aggressive characteristics than those with less aggressive characteristics: grade 3 vs. grades 1–2 (P = 0.025), invasive ductal carcinoma vs. invasive lobular carcinoma (P = 0.002), and triple negative or HER2 type vs. luminal type (P < 0.001). Conclusions Ultrafast DCE-MRI-derived parameters showed a strong relationship with some breast cancer characteristics, especially histopathology and molecular subtype.

Keywords