Advances in Civil Engineering (Jan 2021)

Analysis of Pure Bending Vertical Deflection of Improved Composite Box Girders with Corrugated Steel Webs

  • Chi Ma,
  • Shi-zhong Liu,
  • Jin Di,
  • Rui-jie Zhang

DOI
https://doi.org/10.1155/2021/6617846
Journal volume & issue
Vol. 2021

Abstract

Read online

Steel bottom plates are applied as replacements for the concrete bottom plates in order to reduce the dead weight of the composite box girders with corrugated steel webs and steel bottom plates (CSWSB). Due to the change in the material, the previous analytical calculation methods of vertical deflection of composite box girders with corrugated steel webs (CSWs) cannot be directly applied to the improved composite box girders. The shear lag warpage displacement function was derived based on the shear deformation laws of the upper flange and the bottom plates of the improved composite box girders. The equations for the calculation of the shear deformation and the additional deflection due to the shear lag of continuous and simply supported composite box girders with CSWSB under concentrated and uniformly distribution loads were derived by considering the double effects of the shear lag and the shear deformations of the top and the bottom plates with different elastic moduli. The analytical solutions of the vertical deflection of the improved composite box girders include the theory of the bending deflection of elementary beams, shear deformation of CSWs, and the additional deflection caused by the shear lag. Based on the theoretical derivation, an analytical solution method was established and the obtained vertical deflection analytical solutions were compared with the finite element method (FEM) calculation results and the experimental values. The analytical equations of vertical deflection under the two supporting conditions and the two load cases have verified the analyses and the comparisons. Further, the additional deflections due to the shear lag and the shear deformation are found to be less than 2% and 34% of the total deflection values, respectively. Moreover, under uniform distributed load conditions, the deflection value was found to be higher than that of the under concentrated load condition. It was also found that the ratio of the deflection caused by the shear lag or the shear deformation to the total deflection decreased gradually with the increase in the span width ratio. When the value of the span width ratio of a single box and single chamber composite box girder with CSWSB was equal to or greater than 8, the deflections caused by the shear lag and the shear deformation could be ignored.