International Journal of Photoenergy (Jan 2021)

Ni-Doped Protonated Layered Titanate/TiO2 Composite with Efficient Photocatalytic Activity for NOx Decomposition Reactions

  • Kanji Saito,
  • Shota Orikasa,
  • Yusuke Asakura,
  • Yusuke Ide,
  • Yoshiyuki Sugahara,
  • Masataka Ogasawara,
  • Shu Yin,
  • Sumio Kato

DOI
https://doi.org/10.1155/2021/8847956
Journal volume & issue
Vol. 2021

Abstract

Read online

A unique structural transformation of a lepidocrocite-type layered titanate, K0.8Ti1.73Li0.27O4, into a rutile-type TiO2 has recently been realized via dilute HCl treatment and subsequent drying at room temperature for producing rutile-nanoparticle-decorated protonated layered titanate exhibiting highly efficient photocatalytic activity. Herein, the authors report synthesis of a lepidocrocite-type layered cesium titanate with nominal compositions of Cs0.7Ti1.825‐x/2Nix□0.175‐x/2O4 (x=0, 0.05, 0.1, and 0.35) through solid-state reactions of Cs2CO3, TiO2, and Ni(CH3COO)2·4H2O at different temperatures (600 or 800°C), followed by treatment with dilute HCl and subsequent drying to produce a Ni-doped protonated layered titanate/TiO2 composite. Cs0.7Ti1.825‐x/2Nix□0.175‐x/2O4 with an optimized Ni content obtained at a lower temperature was converted into a Ni-doped protonated layered titanate/TiO2 composite to exhibit high photocatalytic activity for NOx decomposition reactions.