Atmospheric Measurement Techniques (May 2011)

Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry

  • F. Meier,
  • D. Scherer,
  • J. Richters,
  • A. Christen

DOI
https://doi.org/10.5194/amt-4-909-2011
Journal volume & issue
Vol. 4, no. 5
pp. 909 – 922

Abstract

Read online

This research quantifies and discusses atmospheric effects, which alter the radiance observed by a ground-based thermal-infrared (TIR) camera. The TIR camera is mounted on a boom at a height of 125 m above ground on top of a high-rise building in the city of Berlin, Germany (52.4556° N, 13.3200° E) and observes the Earth's surface. The study shows that atmospheric correction of TIR imagery of the three-dimensional (3-D) urban environment acquired in oblique viewing geometry has to account for spatial variability of line-of-sight (LOS) geometry. We present an atmospheric correction procedure that uses these spatially distributed LOS geometry parameters, the radiative transfer model MODTRAN<sup>TM</sup>5.2 and atmospheric profile data derived from meteorological measurements in the field of view (FOV) of the TIR camera. The magnitude of atmospheric effects varies during the analysed 24-hourly period (6 August 2009) and is particularly noticeable for surfaces showing a strong surface-to-air temperature difference. The differences between uncorrected and corrected TIR imagery reach up to 6.7 K at 12:00. The use of non-spatially distributed LOS parameters leads to errors of up to 3.7 K at 12:00 and up to 0.5 K at 24:00.