Nature Communications (Oct 2023)
Process integration and future outlook of 2D transistors
Abstract
The academic and industrial communities have proposed two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors as a future option to supplant silicon transistors at sub-10nm physical gate lengths. In this Comment, we share the recent progress in the fabrication of complementary metal-oxide-semiconductor (CMOS) devices based on stacked 2D TMD nanoribbons and specifically highlight issues that still need to be resolved by the 2D community in five crucial research areas: contacts, channel growth, gate oxide, variability, and doping. While 2D TMD transistors have great potential, more research is needed to understand the physical interactions of 2D materials at the atomic scale.