Molecules (Sep 2021)
Influence of Submicron Fibrillated Cellulose Fibers from Cotton on Hydration and Microstructure of Portland Cement Paste
Abstract
This paper reports the influence of submicron hydrophilic fibers on the hydration and microstructure of Portland cement paste. Submicron fibrillated cellulose (SMC) fibers was prepared by the acid hydrolysis of cotton fibers in H2SO4 solution (55% v/v) for 1.5 h at a temperature of 50 °C. The SMC fibers were added into cement with a dosage of 0.03 wt.%, and the effect of SMC on the hydration and microstructure of cement paste was investigated by calorimeter analysis, XRD, FT-IR, DSC-TG, and SEM. Microcrystalline cellulose (MCC) fibers were used as the contrast admixture with the same dosage in this study. The results show that the addition of SMC fibers can accelerate the cement hydration rate during the first 20 h of the hydration process and improve the hydration process of cement paste in later stages. These results are because the scale of SMC fibers more closely matches the size of the C-S-H gel compared to MCC fibers, given that the primary role of the SMC is to provide potential heterogeneous nucleation sites for the hydration products, which is conducive to an accelerated and continuous hydration reaction. Furthermore, the induction and bridging effects of the SMC fibers make the cement paste microstructure more homogeneous and compact.
Keywords