Engineering Applications of Computational Fluid Mechanics (Jan 2020)

Numerical simulation of the aerodynamic characteristics of double unit train

  • Zijian Guo,
  • Tanghong Liu,
  • Hassan Hemida,
  • Zhengwei Chen,
  • Hongkang Liu

DOI
https://doi.org/10.1080/19942060.2020.1784798
Journal volume & issue
Vol. 14, no. 1
pp. 910 – 922

Abstract

Read online

Double unit trains running at high speeds may create additional aerodynamic challenges due to two streamlined structures with close proximity, exploring the aerodynamic performance of double unit trains is now critical. In this study, detached eddy simulation (DES) approach was employed to study the aerodynamic performance and the nearby flow patterns of a double unit train, whose results were compared and analyzed with that of a single-unit train with a same length. The results showed that the coupling method could change the aerodynamic drag on each car and tended to increase the overall drag of the double unit train. The lift force of the front car near the coupler was significantly increased. Similar slipstream distributions were found around the front half single and double-unit train except in a region close to the coupler. Due to the coupling structure, the slipstream of the rear half of double unit train was much stronger compared to single unit train. The vortex region behind the double-unit train was much wider than that of the single-unit train and was accompanied by greater vortex-shedding.

Keywords