Journal of Nucleic Acids (Jan 2022)
Exposure to a Pathological Condition May Be Required for the Cells to Secrete Exosomes Containing mtDNA Aberration
Abstract
Exosomes, nanovesicles secreted by all cells, carry out intercellular communication by transmitting biologically active cargo comprising DNA, RNA, and proteins. These biomolecules reflect the status of their parent cells and can be altered by pathological conditions. Therefore, the researchers have been investigating differential sequences and quantities of DNA associated with exosomes as valuable biomarkers of diseases. Exosomes carry different types of DNA molecules, including genomic, cytoplasmic, and mitochondrial (mtDNA). The mtDNA aberrations are reported to be a hallmark of diseases involving oxidative stress, such as cancer and neurodegenerative diseases. Establishing robust in vitro models comprising appropriate cell lineages is the first step towards investigating disease-specific anomalies and testing therapeutics. Induced pluripotent stem (iPS) cells from patients with diseases have been used for this purpose since they can differentiate into various cells. The current study investigated mtDNA aberrations in exosomes secreted by primary cancer cells and neural stem cells (NSCs) differentiated from iPS cells. The primary cancer cells were isolated from surgically removed glioblastoma multiforme (GBM) tissue, and the iPS cells were produced from control and Alzheimer’s disease (AD) subjects’ B lymphocytes. We detected aberrations in mtDNA associated with exosomes secreted from GBM cells but not from the NSCs. This result indicates that the cells may not secrete exosomes carrying mtDNA aberration without exposure to a pathological condition. Thus, we may need to consider this fact when we use iPS cell-derived cells as an in vitro disease model.