Nanomaterials (Mar 2019)

Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation

  • Lijing Di,
  • Hua Yang,
  • Tao Xian,
  • Xueqin Liu,
  • Xiujuan Chen

DOI
https://doi.org/10.3390/nano9030399
Journal volume & issue
Vol. 9, no. 3
p. 399

Abstract

Read online

Z-scheme Ag2S/BiFeO3 heterojunction composites were successfully prepared through a precipitation method. The morphology and microstructure characterization demonstrate that Ag2S nanoparticles (30–50 nm) are well-decorated on the surfaces of polyhedral BiFeO3 particles (500–800 nm) to form Ag2S/BiFeO3 heterojunctions. The photocatalytic and photo-Fenton catalytic activities of the as-derived Ag2S/BiFeO3 heterojunction composites were evaluated by the degradation of methyl orange (MO) under visible-light irradiation. The photocatalytic result indicates that the Ag2S/BiFeO3 composites exhibit much improved photocatalytic activities when compared with bare Ag2S and BiFeO3. The optimum composite sample was observed to be 15% Ag2S/BiFeO3 with an Ag2S mass fraction of 15%. Furthermore, the addition of H2O2 can further enhance the dye degradation efficiency, which is due to the synergistic effects of photo- and Fenton catalysis. The results of photoelectrochemical and photoluminescence measurements suggest a greater separation of the photoexcited electron/hole pairs in the Ag2S/BiFeO3 composites. According to the active species trapping experiments, the photocatalytic and photo-Fenton catalytic mechanisms of the Ag2S/BiFeO3 composites were proposed and discussed.

Keywords