Insights into Imaging (Sep 2024)

An ensemble machine learning model assists in the diagnosis of gastric ectopic pancreas and gastric stromal tumors

  • Kui Sun,
  • Ying Wang,
  • Rongchao Shi,
  • Siyu Wu,
  • Ximing Wang

DOI
https://doi.org/10.1186/s13244-024-01809-2
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Objective To develop an ensemble machine learning (eML) model using multiphase computed tomography (MPCT) for distinguishing between gastric ectopic pancreas (GEP) and gastric stromal tumors (GIST) in lesions < 3 cm. Methods In this study, we retrospectively collected MPCT images from 138 patients between April 2017 and June 2023 across two centers. Cohort 1 comprised 94 patients divided into a training cohort and an internal validation cohort, while the 44 patients from Cohort 2 constituted the external validation cohort. Deep learning (DL) models were constructed based on the lesion region, and radiomics features were extracted to develop radiomics models, which were later integrated into the fusion model. Model performance was assessed through the analysis of the area under the receiver operating characteristic curve (AUROC). The diagnostic efficacy of the optimal model was compared with that of a radiologist. Additionally, the radiologist with the assistance of the eML model provides a secondary diagnosis, to assess the potential clinical value of the model. Results After evaluation using an external validation cohort, the radiomics model demonstrated the highest performance in the venous phase, achieving AUROC of 0.87. The DL model showed optimal performance in the non-contrast phase, with AUROC of 0.81. The eML achieved the best performance across all models, with AUROC of 0.90. The use of eML-assisted analysis resulted in a significant improvement in the junior radiologist’s accuracy, rising from 0.77 to 0.93 (p < 0.05). However, the senior radiologist’s accuracy, while improving from 0.86 to 0.95, did not exhibit a statistically significant difference. Conclusion eML model based on MPCT can effectively distinguish between GEPs and GISTs < 3 cm. Critical relevance statement The multiphase CT-based fusion model, incorporating radiomics and DL technology, proves effective in distinguishing between GEP and gastric stromal tumors, serving as a valuable tool to enhance diagnoses and offering references for clinical decision-making. Key Points No studies yet differentiated these tumors via radiomics or DL. Radiomics and DL methodologies unveil potentially distinct phenotypes within lesions. Quantitative analysis on CT for GIST and ectopic pancreas. Ensemble learning aids accurate diagnoses, assisting treatment decisions. Graphical Abstract

Keywords