Journal of Nuclear Engineering (Apr 2023)
Machine-Learning-Based Composition Analysis of the Stability of V–Cr–Ti Alloys
Abstract
Machine learning methods allow the prediction of material properties, potentially using only the elemental composition of a molecule or compound, without the knowledge of molecular or crystalline structures. Herein, a composition-based machine learning prediction of the material properties of V–Cr–Ti alloys is demonstrated. Our machine-learning-based prediction of the stability of the V–Cr–Ti alloys is qualitatively consistent with the composition-dependent experimental data of the ductile–brittle transition temperature and swelling. Furthermore, our computational results suggest the existence of a composition region, Cr+Ti ~ 60 wt.%, at a significantly low ductile–brittle transition temperature. This outcome contrasts with a reportedly low Cr+Ti content of less than 10 wt.% in conventional V–Cr–Ti alloys. Machine-learning-based numerical stability prediction is useful for the design and analysis of metal alloys, particularly for multicomponent alloys such as high-entropy alloys, to develop materials for nuclear fusion reactors.
Keywords