Physical Review X (Feb 2018)
High-Resolution Nanoscale Solid-State Nuclear Magnetic Resonance Spectroscopy
Abstract
We present a new method for high-resolution nanoscale magnetic resonance imaging (nano-MRI) that combines the high spin sensitivity of nanowire-based magnetic resonance detection with high-spectral-resolution nuclear magnetic resonance (NMR) spectroscopy. Using a new method that incorporates average Hamiltonian theory into optimal control pulse engineering, we demonstrate NMR pulses that achieve high-fidelity quantum control of nuclear spins in nanometer-scale ensembles. We apply this capability to perform dynamical decoupling experiments that achieve a factor of 500 reduction of the proton-spin resonance linewidth in a (50-nm)^{3} volume of polystyrene. We make use of the enhanced spin coherence times to perform Fourier-transform imaging of proton spins with a one-dimensional slice thickness below 2 nm.