Communications Physics (Mar 2024)
Fiber optic computing using distributed feedback
Abstract
Abstract The widespread adoption of machine learning and other matrix intensive computing algorithms has renewed interest in analog optical computing, which has the potential to perform large-scale matrix multiplications with superior energy scaling and lower latency than digital electronics. However, most optical techniques rely on spatial multiplexing, requiring a large number of modulators and detectors, and are typically restricted to performing a single kernel convolution operation per layer. Here, we introduce a fiber-optic computing architecture based on temporal multiplexing and distributed feedback that performs multiple convolutions on the input data in a single layer. Using Rayleigh backscattering in standard single mode fiber, we show that this technique can efficiently apply a series of random nonlinear projections to the input data, facilitating a variety of computing tasks. The approach enables efficient energy scaling with orders of magnitude lower power consumption than GPUs, while maintaining low latency and high data-throughput.