Journal of Limnology (Sep 2004)

Experiences with dormancy in tardigrades

  • Deborah BOSCHINI,
  • Ingemar K. JÖNSSON,
  • Tiziana ALTIERO,
  • Roberto BERTOLANI,
  • Roberto GUIDETTI,
  • Lorena REBECCHI

DOI
https://doi.org/10.4081/jlimnol.2004.s1.16
Journal volume & issue
Vol. 63, no. 1s
pp. 16 – 25

Abstract

Read online

Tardigrades often colonise extreme habitats, in which they survive using both types of dormancy: quiescence and diapause. Together with nematodes and bdelloid rotifers, tardigrades are known to enter quiescence (with several forms of cryptobiosis: anhydrobiosis, cryobiosis, anoxybiosis, osmobiosis) at any stage of their life cycle, from egg to adult. Entering anhydrobiosis, tardigrades contract their body into a so-called tun, loosing most of their free and bound water (>95%), synthesizing cell protectants (e.g., trehalose, glycerol, heat shock proteins) and strongly reducing or suspending their metabolism. Our research on cryptobiosis focused on some ecological and evolutionary aspects. We evaluated: i) the long-term anhydrobiotic survival by comparing quantitative data on recovery from naturally induced desiccation in several species of tardigrades; ii) differences in survival patterns between species and populations by experimentally inducing anhydrobiosis and cryobiosis; iii) phenotypic factors affecting anhydrobiotic survival. As regards diapause, we considered encystment and eggs. Encystment involves at least the synthesis of new cuticular structures. Morphological changes during cyst formation are more complex than those involved in tun formation. We analyzed more in detail encystment processes, comparing a semiterrestrial with a limnic species. Several inter-specific differences have been identified, other than the production of two types of cysts in the semiterrestrial species. Our analysis of life history traits of a laboratory reared strain of a soil tardigrade revealed a particular hatching phenology that involved the production of both subitaneous and resting eggs. The latter need a cue to hatch (dehydration followed by re-hydration). In addition, the evolutionary meaning of dormancy in tardigrades is discussed.

Keywords