E3S Web of Conferences (Jan 2021)
Stress-Strain behaviour of plain and fibre reinforced SCC mixes
Abstract
The goal of this research is to better understand the stress-strain behaviour of plain and fibre reinforced M30 grade plain SCC mixtures. The experimental stress strain relationship of SCC revealed that all changes had a minor effect on the stress strain curve's first section. The stress-strain behaviour of M30 FRSCC mixtures has improved with the addition of fibres, resulting in lower stress values for the same stresses. At peak loads, all fibre reinforced SCC mixes, notably SFRSCC and HFRSCC mixes, showed an increase in strain values. Steel and hybrid fibres enhanced the post-peak stress-strain behaviour of SCC mixes compared to glass fibered SCC mixes. M30 grades’ modulus of elasticity When compared to other FRSCC mixes, HFRSCC mixes created with optimal combinations of PF and s/a ratios have high values. By dispersing deformation energy through fibres, HFRSCC mixtures have a better capacity to prevent fracture growth. HFRSCC mixtures with high toughness moduli have better shock resistance. Because of the dense and compact microstructure, the modulus of elasticity (E) of HFRSCC mixes shows improved performance.