Applied Sciences (May 2020)

Automatic Pancreas Segmentation Using Coarse-Scaled 2D Model of Deep Learning: Usefulness of Data Augmentation and Deep U-Net

  • Mizuho Nishio,
  • Shunjiro Noguchi,
  • Koji Fujimoto

DOI
https://doi.org/10.3390/app10103360
Journal volume & issue
Vol. 10, no. 10
p. 3360

Abstract

Read online

Combinations of data augmentation methods and deep learning architectures for automatic pancreas segmentation on CT images are proposed and evaluated. Images from a public CT dataset of pancreas segmentation were used to evaluate the models. Baseline U-net and deep U-net were chosen for the deep learning models of pancreas segmentation. Methods of data augmentation included conventional methods, mixup, and random image cropping and patching (RICAP). Ten combinations of the deep learning models and the data augmentation methods were evaluated. Four-fold cross validation was performed to train and evaluate these models with data augmentation methods. The dice similarity coefficient (DSC) was calculated between automatic segmentation results and manually annotated labels and these were visually assessed by two radiologists. The performance of the deep U-net was better than that of the baseline U-net with mean DSC of 0.703–0.789 and 0.686–0.748, respectively. In both baseline U-net and deep U-net, the methods with data augmentation performed better than methods with no data augmentation, and mixup and RICAP were more useful than the conventional method. The best mean DSC was obtained using a combination of deep U-net, mixup, and RICAP, and the two radiologists scored the results from this model as good or perfect in 76 and 74 of the 82 cases.

Keywords