PLoS ONE (Jan 2011)

Nuclear GRP75 binds retinoic acid receptors to promote neuronal differentiation of neuroblastoma.

  • Yu-Yin Shih,
  • Hsinyu Lee,
  • Akira Nakagawara,
  • Hseuh-Fen Juan,
  • Yung-Ming Jeng,
  • Yeou-Guang Tsay,
  • Dong-Tsamn Lin,
  • Fon-Jou Hsieh,
  • Chien-Yuan Pan,
  • Wen-Ming Hsu,
  • Yung-Feng Liao

DOI
https://doi.org/10.1371/journal.pone.0026236
Journal volume & issue
Vol. 6, no. 10
p. e26236

Abstract

Read online

Retinoic acid (RA) has been approved for the differentiation therapy of neuroblastoma (NB). Previous work revealed a correlation between glucose-regulated protein 75 (GRP75) and the RA-elicited neuronal differentiation of NB cells. The present study further demonstrated that GRP75 translocates into the nucleus and physically interacts with retinoid receptors (RARα and RXRα) to augment RA-elicited neuronal differentiation. GRP75 was required for RARα/RXRα-mediated transcriptional regulation and was shown to reduce the proteasome-mediated degradation of RARα/RXRαin a RA-dependent manner. More intriguingly, the level of GRP75/RARα/RXRα tripartite complexes was tightly associated with the RA-induced suppression of tumor growth in animals and the histological grade of differentiation in human NB tumors. The formation of GRP75/RARα/RXRα complexes was intimately correlated with a normal MYCN copy number of NB tumors, possibly implicating a favorable prognosis of NB tumors. The present findings reveal a novel function of nucleus-localized GRP75 in actively promoting neuronal differentiation, delineating the mode of action for the differentiation therapy of NB by RA.