IEEE Access (Jan 2021)
Soft Frequency Reuse With Allocation of Resource Plans Based on Machine Learning in the Networks With Flying Base Stations
Abstract
Flying base stations (FlyBSs) enable ubiquitous communications in the next generation mobile networks with a flexible topology. However, a deployment of the FlyBSs intensifies interference, which can result in a degradation in the throughput of cell-edge users. In this paper, we introduce a flexible soft frequency reuse (F-SFR) that enables a self-organization of a common SFR in the networks with an unpredictable and dynamic topology with the FlyBSs. We propose a graph theory-based algorithm for an allocation of resource plans, which is understood as a bandwidth allocation and a transmission power setting in the context of SFR. Furthermore, we introduce a low-complexity implementation of the proposed resource allocation using deep neural network (DNN) to significantly reduce the computation complexity. We show that the proposed F-SFR increases the throughput of cell-edge users by 16% to 26% and, at the same time, improves the satisfaction of the cell-edge users by up to 25% compared to the state-of-the-art solutions. We also demonstrate that the proposed scheme ensures a higher fairness in the throughput among the users with respect to the state-of-the-art solutions. The implementation via DNN also outperforms all state-of-the-art solutions despite its very low complexity.
Keywords