IEEE Access (Jan 2022)

A Hypergraph Approach for Estimating Growth Mechanisms of Complex Networks

  • Masaaki Inoue,
  • Thong Pham,
  • Hidetoshi Shimodaira

DOI
https://doi.org/10.1109/ACCESS.2022.3143612
Journal volume & issue
Vol. 10
pp. 35012 – 35025

Abstract

Read online

Temporal datasets that describe complex interactions between individuals over time are increasingly common in various domains. Conventional graph representations of such datasets may lead to information loss since higher-order relationships between more than two individuals must be broken into multiple pairwise relationships in graph representations. In those cases, a hypergraph representation is preferable since it can preserve higher-order relationships by using hyperedges. However, existing hypergraph models of temporal complex networks often employ some data-independent growth mechanism, which is the linear preferential attachment in most cases. In principle, this pre-specification is undesirable since it completely ignores the data at hand. Our work proposes a new hypergraph growth model with a data-driven preferential attachment mechanism estimated from observed data. A key component of our method is a recursive formula that allows us to overcome a bottleneck in computing the normalizing factors in our model. We also treat an often-neglected selection bias in modeling the emergence of new edges with new nodes. Fitting the proposed hypergraph model to 13 real-world datasets from diverse domains, we found that all estimated preferential attachment functions deviates substantially from the linear form. This demonstrates the need of doing away with the linear preferential attachment assumption and adopting a data-driven approach. We also showed that our model outperformed conventional models in replicating the observed first-order and second-order structures in these real-world datasets.

Keywords