Nature Communications (Jun 2017)

Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning

  • A. Sanchez-Gonzalez,
  • P. Micaelli,
  • C. Olivier,
  • T. R. Barillot,
  • M. Ilchen,
  • A. A. Lutman,
  • A. Marinelli,
  • T. Maxwell,
  • A. Achner,
  • M. Agåker,
  • N. Berrah,
  • C. Bostedt,
  • J. D. Bozek,
  • J. Buck,
  • P. H. Bucksbaum,
  • S. Carron Montero,
  • B. Cooper,
  • J. P. Cryan,
  • M. Dong,
  • R. Feifel,
  • L. J. Frasinski,
  • H. Fukuzawa,
  • A. Galler,
  • G. Hartmann,
  • N. Hartmann,
  • W. Helml,
  • A. S. Johnson,
  • A. Knie,
  • A. O. Lindahl,
  • J. Liu,
  • K. Motomura,
  • M. Mucke,
  • C. O’Grady,
  • J-E Rubensson,
  • E. R. Simpson,
  • R. J. Squibb,
  • C. Såthe,
  • K. Ueda,
  • M. Vacher,
  • D. J. Walke,
  • V. Zhaunerchyk,
  • R. N. Coffee,
  • J. P. Marangos

DOI
https://doi.org/10.1038/ncomms15461
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 9

Abstract

Read online

X-ray free-electron lasers, important light sources for materials research, suffer from shot-to-shot fluctuations that necessitate complex diagnostics. Here, the authors apply machine learning to accurately predict pulse properties, using parameters that can be acquired at high-repetition rates.