Biological Psychiatry Global Open Science (May 2024)

Fundamental Sex Differences in Cocaine-Induced Plasticity of Dopamine D1 Receptor– and D2 Receptor–Expressing Medium Spiny Neurons in the Mouse Nucleus Accumbens Shell

  • Andrew D. Chapp,
  • Chinonso A. Nwakama,
  • Pramit P. Jagtap,
  • Chau-Mi H. Phan,
  • Mark J. Thomas,
  • Paul G. Mermelstein

Journal volume & issue
Vol. 4, no. 3
p. 100295

Abstract

Read online

Background: Cocaine-induced plasticity in the nucleus accumbens shell of males occurs primarily in dopamine D1 receptor–expressing medium spiny neurons (D1R-MSNs), with little if any impact on dopamine D2 receptor–expressing medium spiny neurons (D2R-MSNs). In females, the effect of cocaine on accumbens shell D1R- and D2R-MSN neurophysiology has yet to be reported, nor have estrous cycle effects been accounted for. Methods: We used a 5-day locomotor sensitization paradigm followed by a 10- to 14-day drug-free abstinence period. We then obtained ex vivo whole-cell recordings from fluorescently labeled D1R-MSNs and D2R-MSNs in the nucleus accumbens shell of male and female mice during estrus and diestrus. We examined accumbens shell neuronal excitability as well as miniature excitatory postsynaptic currents (mEPSCs). Results: In females, we observed alterations in D1R-MSN excitability across the estrous cycle similar in magnitude to the effects of cocaine in males. Furthermore, cocaine shifted estrous cycle–dependent plasticity from intrinsic excitability changes in D1R-MSNs to D2R-MSNs. In males, cocaine treatment produced the anticipated drop in D1R-MSN excitability with no effect on D2R-MSN excitability. Cocaine increased mEPSC frequencies and amplitudes in D2R-MSNs from females in estrus and mEPSC amplitudes of D2R-MSNs from females in diestrus. In males, cocaine increased both D1R- and D2R-MSN mEPSC amplitudes with no effect on mEPSC frequencies. Conclusions: Overall, while there are similar cocaine-induced disparities regarding the relative excitability of D1R-MSNs versus D2R-MSNs between the sexes, this is mediated through reduced D1R-MSN excitability in males, whereas it is due to heightened D2R-MSN excitability in females.

Keywords