Remote Sensing (Apr 2024)

Assessment of the Real-Time and Rapid Precise Point Positioning Performance Using Geodetic and Low-Cost GNSS Receivers

  • Mengmeng Chen,
  • Lewen Zhao,
  • Wei Zhai,
  • Yifei Lv,
  • Shuanggen Jin

DOI
https://doi.org/10.3390/rs16081434
Journal volume & issue
Vol. 16, no. 8
p. 1434

Abstract

Read online

Precise Point Positioning (PPP), coupled with the ambiguity resolution (AR) method, has demonstrated substantial potential in fields like agricultural navigation and airborne mapping. However, there remains a notable deficiency in the comprehensive comparative evaluation of its performance when using rapid and real-time satellite products, especially for mass low-cost receivers. Stations equipped with geodetic and low-cost receivers are analyzed in kinematic and static mode. In the kinematic mode, the GPS+Galileo-combined PPP, employing ambiguity fixing with “WHU” rapid products, achieves the highest positioning accuracy of 0.9 cm, 0.9 cm, and 2.6 cm in the North, East, and Up components, respectively. Real-time PPP using “CNT” products attains accuracies of 2.1 cm, 2.7 cm, and 4.8 cm for these components, utilizing GPS ambiguity-fixed PPP. BDS positioning accuracy is inferior to standalone GPS, but improves when the number of visible BDS satellites exceeds 10. Convergence time analysis shows that approximately 38.2 min are required for single GPS or BDS PPP using the “WHU” products and geodetic receivers, which can be reduced to 18.5 min for dual-system combinations and further to 14.8 min for triple-system combinations. The time can be further reduced by ambiguity fixing. In the static mode, multi-GNSS combination does not significantly impact convergence times, which are more influenced by the precision of the products used. Real-time products require approximately 22 min to achieve horizontal accuracy below 0.1 m, while rapid products reach this accuracy within 10 min. For PPP using low-cost GNSS receivers, more than two hours are necessary to achieve an accuracy better than 0.1 m for kinematic PPP, which is considerably longer than the convergence time observed at MGEX stations. However, the accuracy achieved after convergence, as well as the performance of static PPP, is comparable to that of MGEX stations.

Keywords