Biomedicine & Pharmacotherapy (Nov 2023)

SIRT1-dependent deacetylation of Txnip H3K9ac is critical for exenatide-improved diabetic kidney disease

  • Mei-jun Wang,
  • Xiang Cai,
  • Ri-ying Liang,
  • En-ming Zhang,
  • Xiao-qi Liang,
  • Hua Liang,
  • Chang Fu,
  • An-dong Zhou,
  • Yi Shi,
  • Fen Xu,
  • Meng-yin Cai

Journal volume & issue
Vol. 167
p. 115515

Abstract

Read online

Glucagon-like peptide 1 receptor agonist exenatide (exendin-4) has potential protective capabilities against diabetic kidney disease (DKD). However, the underlying mechanism has not been fully elucidated. The expression of thioredoxin-interacting protein (Txnip) is upregulated during DKD progression by histone acetylation. Sirtuin 1 (SIRT1) is a deacetylase and is decreased in DKD, which indicates that it may regulate Txnip in this disease. Here, we used whole-body heterozygous Sirt1 knockout (Sirt1+/-) and kidney-specific Sirt1 knockout (KSK) mice to investigate whether SIRT1 regulates Txnip via histone deacetylation in DKD and exenatide-alleviated DKD. Exenatide substantially improved renal pathological damage, decreased the albumin-to-creatinine ratio (ACR), upregulated SIRT1 expression, and downregulated Txnip expression in kidneys of high-fat diet-treated C57BL/6J mice. However, these effects diminished in Sirt1+/- and KSK mice under exenatide treatment. The downregulation of Txnip expression by exendin-4 in high-glucose-treated SV40 MES13 cells was hampered during Sirt1 knockdown. These results demonstrate that kidney SIRT1 is indispensable in exenatide-improved DKD and downregulation of Txnip expression. Exendin-4 mechanistically downregulated Txnip histone 3 lysine 9 acetylation (H3K9ac) in a SIRT1-dependent manner and decreased spliced X-box binding protein 1 (XBP1s) recruitment to the Txnip promoter. These findings provide epigenetic evidence elucidating the specific mechanism for exenatide-mediated DKD alleviation and highlight the importance of Txnip as a promising therapeutic target for DKD.

Keywords