Fundamental Research (Jan 2023)
Nonequilibrium thermodynamics in cavity optomechanics
Abstract
Classical thermodynamics has been a great achievement in dealing with systems that are in equilibrium or near equilibrium. As an emerging field, nonequilibrium thermodynamics provides a general framework for understanding the nonequilibrium processes, particularly in small systems that are typically far-from-equilibrium and are dominated by thermal or quantum fluctuations. Cavity optomechanical systems hold great promise among the various experimental platforms for studying nonequilibrium thermodynamics owing to their high controllability, excellent mechanical performance, and ability to operate deep in the quantum regime. Here, we present an overview of the recent advances in nonequilibrium thermodynamics with cavity optomechanical systems. The experimental results in entropy production assessment, fluctuation theorems, heat transfer, and heat engines are highlighted.