Fire (Nov 2021)

Assessing Wildfire Exposure to Communities and Protected Areas in Portugal

  • Fermin Alcasena,
  • Alan Ager,
  • Yannick Le Page,
  • Paulo Bessa,
  • Carlos Loureiro,
  • Tiago Oliveira

DOI
https://doi.org/10.3390/fire4040082
Journal volume & issue
Vol. 4, no. 4
p. 82

Abstract

Read online

During the 2017 wildfire season in Portugal, unprecedented episodes burned 6% of the country’s area and underscored the need for a long-term comprehensive solution to mitigate future wildfire disasters. In this study, we built and calibrated a national-scale fire simulation system including the underlying fuels and weather data and used the system to quantify wildfire exposure to communities and natural areas. We simulated 10,000 fire season replicates under extreme weather to generate 1.6 million large wildfire perimeters and estimate annual burn probability and fire intensity at 100 m pixel resolution. These outputs were used to estimate wildfire exposure to buildings and natural areas. The results showed a fire exposure of 10,394 structures per year and that 30% of communities accounted for 82% of the total. The predicted burned area in natural sites was 18,257 ha yr−1, of which 9.8% was protected land where fuel management is not permitted. The main burn probability hotspots were in central and northern regions. We highlighted vital priorities to safeguard the most vulnerable communities and promote landscape management programs at the national level. The results can be useful to inform Portugal’s new national plan under implementation, where decision-making is based on a probabilistic methodology. The core strategies include protecting people and infrastructure and wildfire management. Finally, we discuss the next steps necessary to improve and operationalize the framework developed here. The wildfire simulation modeling approach presented in this study is extensible to other fire-prone Mediterranean regions where predicting catastrophic fires can help anticipate future disasters.

Keywords