PLoS ONE (Jan 2012)

Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naïve state.

  • Naoki Nishishita,
  • Masayuki Shikamura,
  • Chiemi Takenaka,
  • Nozomi Takada,
  • Noemi Fusaki,
  • Shin Kawamata

DOI
https://doi.org/10.1371/journal.pone.0038389
Journal volume & issue
Vol. 7, no. 6
p. e38389

Abstract

Read online

CD34+ cord blood cells can be reprogrammed effectively on dishes coated with a synthetic RGD motif polymer (PronectinF®) using a temperature sensitive Sendai virus vector (SeV TS7) carrying reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC. Dish-shaped human ES cell-like colonies emerged in serum-free primate ES cell medium (supplemented with bFGF) in 20% O2 culture conditions. The copy numbers of SeV TS7 vectors in the cytoplasm were drastically reduced by a temperature shift at 38°C for three days. Then, single cells from colonies were seeded on PronectinF®-coated 96-well plates and cultured under naïve culture conditions (N2B27-based medium supplemented with LIF, forskolin, a MAPK inhibitor, and a GSK inhibitor in 5% O2) for cloning purpose. Dome-shaped mouse ES cell-like colonies from single cells emerged on PronectinF®-coated dishes. These cells were collected and cultured again in primate ES cell medium supplemented with bFGF in 20% O2 and maintained on PronectinF®-coated dishes. Cells were assessed for reprogramming, including the absence of residual SeV and their potential for three germ layer differentiation. Generation of virus-free induced pluripotent stem cell (iPSC) clones from single cells under feeder-free conditions will solve some of the safety concerns related to use of xeno- or allogeneic-material in culture, and contribute to the characterization and the standardization of iPS cells intended for use in a clinical setting.