Revista Brasileira de Hematologia e Hemoterapia (Jan 2012)

Molecular biology of Philadelphia-negative myeloproliferative neoplasms

  • Paulo Vidal Campregher,
  • Fábio Pires de Souza Santos,
  • Guilherme Fleury Perini,
  • Nelson Hamerschlak

DOI
https://doi.org/10.5581/1516-8484.20120035
Journal volume & issue
Vol. 34, no. 2
pp. 150 – 155

Abstract

Read online

Myeloproliferative neoplasms are clonal diseases of hematopoietic stem cells characterized by myeloid hyperplasia and increased risk of developing acute myeloid leukemia. Myeloproliferative neoplasms are caused, as any other malignancy, by genetic defects that culminate in the neoplastic phenotype. In the past six years, since the identification of JAK2V617F, we have experienced a substantial increase in our knowledge about the genetic mechanisms involved in the genesis of myeloproliferative neoplasms. Mutations described in several genes have revealed a considerable degree of molecular homogeneity between different subtypes of myeloproliferative neoplasms. At the same time, the molecular differences between each subtype have become clearer. While mutations in several genes, such as JAK2, myeloproliferative leukemia (MPL) and LNK have been validated in functional assays or animal models as causative mutations, the roles of other recurring mutations in the development of disease, such as TET2 and ASXL1 remain to be elucidated. In this review we will examine the most prevalent recurring gene mutations found in myeloproliferative neoplasms and their molecular consequences.

Keywords