Model Studies on the Ozone‐Mediated Synthesis of Cobalt Oxide Nanoparticles from Dicobalt Octacarbonyl in Ionic Liquids
Ralf Schuster,
Tobias Wähler,
Dr. Miroslav Kettner,
Dr. Friederike Agel,
Dr. Tanja Bauer,
Prof. Peter Wasserscheid,
Prof. Jörg Libuda
Affiliations
Ralf Schuster
Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Germany
Tobias Wähler
Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Germany
Dr. Miroslav Kettner
Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Germany
Dr. Friederike Agel
Institute of Chemical Reaction Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
Dr. Tanja Bauer
Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Germany
Prof. Peter Wasserscheid
Institute of Chemical Reaction Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
Prof. Jörg Libuda
Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Germany
Abstract Low‐temperature synthesis in ionic liquids (ILs) offers an efficient route for the preparation of metal oxide nanomaterials with tailor‐made properties in a water‐free environment. In this work, we investigated the role of 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [C4C1Pyr][NTf2] in the synthesis of cobalt oxide nanoparticles from the molecular precursor Co2(CO)8 with ozone. We performed a model study in ultra‐clean, ultrahigh vacuum (UHV) conditions by infrared reflection absorption spectroscopy (IRAS) using Au(111) as a substrate. Exposure of the pure precursor to ozone at low temperatures results in the oxidation of the first layers, leading to the formation of a disordered CoxOy passivation layer. Similar protection to ozone is also achieved by deposition of an IL layer onto a precursor film prior to ozone exposure. With increasing temperature, the IL gets permeable for ozone and a cobalt oxide film forms at the IL/precursor interface. We show that the interaction with the IL mediates the oxidation and leads to a more densely packed CoxOy film compared to a direct oxidation of the precursor.