Effect of Host Structure on Optical Freedericksz Transition in Dye-Doped Liquid Crystals
Junki Yokota,
Kohsuke Matsumoto,
Koji Usui,
Shoichi Kubo,
Atsushi Shishido
Affiliations
Junki Yokota
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Kohsuke Matsumoto
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Koji Usui
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Shoichi Kubo
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Atsushi Shishido
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
The optical Freedericksz transition (OFT) can reversibly control the molecular orientation of liquid crystals (LCs) only by light irradiation, leading to the development of all-optical devices, such as smart windows. In particular, oligothiophene-doped LCs show the highly sensitive OFT due to the interaction between dyes and an optical-electric field. However, the sensitivity is still low for the application to optical devices. It is necessary to understand the factors in LCs affecting the OFT behavior to reduce the sensitivity. In this study, we investigated the effect of the host LC structure on the OFT in oligothiophene-doped LCs. The threshold light intensity for the OFT in trifluorinated LCs was 42% lower than that in LCs without fluorine substituents. This result contributes to the material design for the low-threshold optical devices utilizing the OFT of dye-doped LCs.