Digital Prediction of the Purchase Price of Fresh Tea Leaves of Enshi Yulu Based on Near-Infrared Spectroscopy Combined with Multivariate Analysis
Shengpeng Wang,
Lin Feng,
Panpan Liu,
Anhui Gui,
Jing Teng,
Fei Ye,
Xueping Wang,
Jinjin Xue,
Shiwei Gao,
Pengcheng Zheng
Affiliations
Shengpeng Wang
Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Lin Feng
Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Panpan Liu
Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Anhui Gui
Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Jing Teng
Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Fei Ye
Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Xueping Wang
Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Jinjin Xue
Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Shiwei Gao
Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Pengcheng Zheng
Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
In this study, near-infrared spectroscopy (NIRS) combined with a variety of chemometrics methods was used to establish a fast and non-destructive prediction model for the purchase price of fresh tea leaves. Firstly, a paired t-test was conducted on the quality index (QI) of seven quality grade fresh tea samples, all of which showed statistical significance (p −1–4751.74 cm−1, 4755.63 cm−1–5129.75 cm−1, 6262.70 cm−1–6633.93 cm−1, and 7386 cm−1–7756.32 cm−1, respectively. The genetic algorithm (GA) was applied to accurately extract 70 and 33 feature spectral data points from the whole denoised spectral data (DSD) and the four characteristic spectral intervals data (FSD), respectively. Principal component analysis (PCA) was applied, respectively, on the data points selected, and the cumulative contribution rates of the first three PCs were 99.856% and 99.852%. Finally, the back propagation artificial neural (BP-ANN) model with a 3-5-1 structure was calibrated with the first three PCs. When the transfer function was logistic, the best results were obtained (Rp2 = 0.985, RMSEP = 6.732 RMB/kg) by 33 feature spectral data points. The detection effect of the best BP-ANN model by 14 external samples were R2 = 0.987 and RMSEP = 6.670 RMB/kg. The results of this study have achieved real-time, non-destructive, and accurate evaluation and digital display of purchase prices of fresh tea samples by using NIRS technology.