International Journal of Molecular Sciences (Mar 2023)

Vapor-Induced Pore-Forming Atmospheric-Plasma-Sprayed Zinc-, Strontium-, and Magnesium-Doped Hydroxyapatite Coatings on Titanium Implants Enhance New Bone Formation—An In Vivo and In Vitro Investigation

  • Hsin-Han Hou,
  • Bor-Shiunn Lee,
  • Yu-Cheng Liu,
  • Yi-Ping Wang,
  • Wei-Ting Kuo,
  • I-Hui Chen,
  • Ai-Chia He,
  • Chern-Hsiung Lai,
  • Kuo-Lun Tung,
  • Yi-Wen Chen

DOI
https://doi.org/10.3390/ijms24054933
Journal volume & issue
Vol. 24, no. 5
p. 4933

Abstract

Read online

Objectives: Titanium implants are regarded as a promising treatment modality for replacing missing teeth. Osteointegration and antibacterial properties are both desirable characteristics for titanium dental implants. The aim of this study was to create zinc (Zn)-, strontium (Sr)-, and magnesium (Mg)-multidoped hydroxyapatite (HAp) porous coatings, including HAp, Zn-doped HAp, and Zn-Sr-Mg-doped HAp, on titanium discs and implants using the vapor-induced pore-forming atmospheric plasma spraying (VIPF-APS) technique. Methods: The mRNA and protein levels of osteogenesis-associated genes such as collagen type I alpha 1 chain (COL1A1), decorin (DCN), osteoprotegerin (TNFRSF11B), and osteopontin (SPP1) were examined in human embryonic palatal mesenchymal cells. The antibacterial effects against periodontal bacteria, including Porphyromonas gingivalis and Prevotella nigrescens, were investigated. In addition, a rat animal model was used to evaluate new bone formation via histologic examination and micro-computed tomography (CT). Results: The ZnSrMg-HAp group was the most effective at inducing mRNA and protein expression of TNFRSF11B and SPP1 after 7 days of incubation, and TNFRSF11B and DCN after 11 days of incubation. In addition, both the ZnSrMg-HAp and Zn-HAp groups were effective against P. gingivalis and P. nigrescens. Furthermore, according to both in vitro studies and histologic findings, the ZnSrMg-HAp group exhibited the most prominent osteogenesis and concentrated bone growth along implant threads. Significance: A porous ZnSrMg-HAp coating using VIPF-APS could serve as a novel technique for coating titanium implant surfaces and preventing further bacterial infection.

Keywords