Heliyon (Apr 2023)

Effect of acidic pretreatment on the microstructural arrangement and anaerobic digestion of Arachis hypogea shells; and process parameters optimization using response surface methodology

  • Kehinde O. Olatunji,
  • Daniel M. Madyira

Journal volume & issue
Vol. 9, no. 4
p. e15145

Abstract

Read online

Enzymatic hydrolysis of lignocellulose feedstocks has been observed as the rate-limiting stage during anaerobic digestion. This necessitated the need for pretreatment before anaerobic digestion for an effective and efficient process. Therefore, this study investigated the impact of acidic pretreatment on Arachis hypogea shells, and different conditions of H2SO4 concentration, exposure time, and autoclave temperature were considered. The substrates were digested for 35 days at a mesophilic temperature to assess the impact of pretreatment on the microstructural organization of the substrate. For the purpose of examining the interactive correlations between the input parameters, response surface methodology (RSM) was used. The result reveals that acidic pretreatment has the strength to disrupt the recalcitrance features of Arachis hypogea shells and make them accessible for microorganisms' activities during anaerobic digestion. In this context, H2SO4 with 0.5% v. v−1 for 15 min at an autoclave temperature of 90 °C increases the cumulative biogas and methane released by 13 and 178%, respectively. The model's coefficient of determination (R2) demonstrated that RSM could model the process. Therefore, acidic pretreatment poses a novel means of total energy recovery from lignocellulose feedstock and can be investigated at the industrial scale.

Keywords