PLoS ONE (Jan 2023)
Imbalanced weighting of proactive and reactive control as a marker of risk-taking propensity.
Abstract
According to the dual mechanisms of control (DMC), reactive and proactive control are involved in adjusting behaviors when maladapted to the environment. However, both contextual and inter-individual factors increase the weight of one control mechanism over the other, by influencing their cognitive costs. According to one of the DMC postulates, limited reactive control capacities should be counterbalanced by greater proactive control to ensure control efficiency. Moreover, as the flexible weighting between reactive and proactive control is key for adaptive behaviors, we expected that maladaptive behaviors, such as risk-taking, would be characterized by an absence of such counterbalance. However, to our knowledge, no studies have yet investigated this postulate. In the current study, we analyzed the performances of 176 participants on two reaction time tasks (Simon and Stop Signal tasks) and a risk-taking assessment (Balloon Analog Risk Taking, BART). The post-error slowing in the Simon task was used to reflect the spontaneous individuals' tendency to proactively adjust behaviors after an error. The Stop Signal Reaction Time was used to assess reactive inhibition capacities and the duration of the button press in the BART was used as an index of risk-taking propensity. Results showed that poorer reactive inhibition capacities predicted greater proactive adjustments after an error. Furthermore, the higher the risk-taking propensity, the less reactive inhibition capacities predicted proactive behavioral adjustments. The reported results suggest that higher risk-taking is associated with a smaller weighting of proactive control in response to limited reactive inhibition capacities. These findings highlight the importance of considering the imbalanced weighting of reactive and proactive control in the analysis of risk-taking, and in a broader sense, maladaptive behaviors.