Drones (Apr 2022)

Mathematical Modeling and Stability Analysis of Tiltrotor Aircraft

  • Hanlin Sheng,
  • Chen Zhang,
  • Yulong Xiang

DOI
https://doi.org/10.3390/drones6040092
Journal volume & issue
Vol. 6, no. 4
p. 92

Abstract

Read online

The key problem in the development process of a tiltrotor is its mathematical modeling. Regarding that, this paper proposes a dividing modeling method which divides a tiltrotor into five parts (rotor, wing, fuselage, horizontal tail, and vertical fin) and to develop aerodynamic models for each of them. In that way, force and moment generated by each part are obtained. Then by blade element theory, we develop the rotor’s dynamic model and rotor flapping angle expression; by mature lifting line theory, the build dynamic models of the wings, fuselage, horizontal tail and vertical fin and the rotors’ dynamic interference on wings, as well as nacelle tilt’s variation against center of gravity and moment of inertia, are taken into account. In MATLAB/Simulink simulation environment, a non-linear tiltrotor simulation model is built, Trim command is applied to trim the tiltrotor, and the XV-15 tiltrotor is taken as an example to validate rationality of the model developed. In the end, the non-linear simulation model is linearized to obtain a state-space matrix, and thus the stability analysis of the tiltrotor is performed.

Keywords