PLoS ONE (Jan 2018)

ABCC6 plays a significant role in the transport of nilotinib and dasatinib, and contributes to TKI resistance in vitro, in both cell lines and primary patient mononuclear cells.

  • Laura N Eadie,
  • Phuong Dang,
  • Jarrad M Goyne,
  • Timothy P Hughes,
  • Deborah L White

DOI
https://doi.org/10.1371/journal.pone.0192180
Journal volume & issue
Vol. 13, no. 1
p. e0192180

Abstract

Read online

ATP Binding Cassette family efflux proteins ABCB1 and ABCG2 have previously been demonstrated to interact with Tyrosine Kinase Inhibitors (TKIs); however, evidence for the interaction of other potentially relevant drug transporters with TKIs is lacking. Through Taqman transporter array technology we assessed the impact of nilotinib on mRNA expression of ABC transporters, with ABCC6 identified as a transporter of interest. Additionally, increased expression of ABCC6 mRNA was observed during in vitro development of nilotinib resistance in BCR-ABL1-expressing cell lines. K562 cells exposed to gradually increasing concentrations of nilotinib (to 2 μM) expressed up to 57-fold higher levels of ABCC6 mRNA when compared with control cells (p = 0.002). Analogous results were observed in nilotinib resistant K562-Dox cells (up to 33-fold higher levels of ABCC6, p = 0.002). IC50 experiments were conducted on patient mononuclear cells in the absence and presence of three ABCC6 inhibitors: indomethacin, probenecid and pantoprazole. Results demonstrated that all three inhibitors significantly reduced nilotinib IC50 (p<0.001) indicating ABCC6 is likely involved in nilotinib transport. Cell line data confirmed these findings. Similar results were obtained for dasatinib, but not imatinib. Combined, these studies suggest that nilotinib and dasatinib are likely substrates of ABCC6 and to our knowledge, this is the first report of ABCC6 involvement in TKI transport. In addition, ABCC6 overexpression may also contribute to nilotinib and dasatinib resistance in vitro. With nilotinib and dasatinib now front line therapy options in the treatment of CML, concomitant administration of ABCC6 inhibitors may present an attractive option to enhance TKI efficacy.