Applied Sciences (Sep 2021)

A Multicast Routing Scheme for the Internet: Simulation and Experimentation in Large-Scale Networks

  • Davide Careglio,
  • Fernando Agraz,
  • Dimitri Papadimitriou

DOI
https://doi.org/10.3390/app11188645
Journal volume & issue
Vol. 11, no. 18
p. 8645

Abstract

Read online

With the globalisation of the multimedia entertainment industry and the popularity of streaming and content services, multicast routing is (re-)gaining interest as a bandwidth saving technique. In the 1990’s, multicast routing received a great deal of attention from the research community; nevertheless, its main problems still remain mostly unaddressed and do not reach the acceptance level required for its wide deployment. Among other reasons, the scaling limitation and the relative complexity of the standard multicast protocol architecture can be attributed to the conventional approach of overlaying the multicast routing on top of the unicast routing topology. In this paper, we present the Greedy Compact Multicast Routing (GCMR) scheme. GMCR is characterised by its scalable architecture and independence from any addressing and unicast routing schemes; more specifically, the local knowledge of the cost to direct neighbour nodes is enough for the GCMR scheme to properly operate. The branches of the multicast tree are constructed directly by the joining destination nodes which acquire the routing information needed to reach the multicast source by means of an incremental two-stage search process. In this paper we present the details of GCMR and evaluate its performance in terms of multicast tree size (i.e., the stretch), the memory space consumption, the communication cost, and the transmission cost. The comparative performance analysis is performed against one reference algorithm and two well-known protocol standards. Both simulation and emulation results show that GCMR achieves the expected performance objectives and provide the guidelines for further improvements.

Keywords