Journal of Experimental & Clinical Cancer Research (Mar 2024)

Functionally-instructed modifiers of response to ATR inhibition in experimental glioma

  • Bianca Walter,
  • Sophie Hirsch,
  • Laurence Kuhlburger,
  • Aaron Stahl,
  • Leonard Schnabel,
  • Silas Wisser,
  • Lara A. Haeusser,
  • Foteini Tsiami,
  • Sarah Plöger,
  • Narges Aghaallaei,
  • Advaita M Dick,
  • Julia Skokowa,
  • Christian Schmees,
  • Markus Templin,
  • Katja Schenke-Layland,
  • Marcos Tatagiba,
  • Sven Nahnsen,
  • Daniel J. Merk,
  • Ghazaleh Tabatabai

DOI
https://doi.org/10.1186/s13046-024-02995-z
Journal volume & issue
Vol. 43, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background The DNA damage response (DDR) is a physiological network preventing malignant transformation, e.g. by halting cell cycle progression upon DNA damage detection and promoting DNA repair. Glioblastoma are incurable primary tumors of the nervous system and DDR dysregulation contributes to acquired treatment resistance. Therefore, DDR targeting is a promising therapeutic anti-glioma strategy. Here, we investigated Ataxia telangiectasia and Rad3 related (ATR) inhibition (ATRi) and functionally-instructed combination therapies involving ATRi in experimental glioma. Methods We used acute cytotoxicity to identify treatment efficacy as well as RNAseq and DigiWest protein profiling to characterize ATRi-induced modulations within the molecular network in glioma cells. Genome-wide CRISPR/Cas9 functional genomic screens and subsequent validation with functionally-instructed compounds and selected shRNA-based silencing were employed to discover and investigate molecular targets modifying response to ATRi in glioma cell lines in vitro, in primary cultures ex vivo and in zebrafish and murine models in vivo. Results ATRi monotherapy displays anti-glioma efficacy in vitro and ex vivo and modulates the molecular network. We discovered molecular targets by genome-wide CRISPR/Cas9 loss-of-function and activation screens that enhance therapeutic ATRi effects. We validated selected druggable targets by a customized drug library and functional assays in vitro, ex vivo and in vivo. Conclusion In conclusion, our study leads to the identification of novel combination therapies involving ATRi that could inform future preclinical studies and early phase clinical trials.

Keywords