Symmetry (Aug 2018)
Finite Element Study of a Threaded Fastening: The Case of Surgical Screws in Bone
Abstract
This paper studies the stress state of a threaded fastening by using Finite Element (FE) models, applied to surgical screws in cortical bone. There is a general interest in studying the stress states induced in the different elements of a joint caused by the thread contact. Analytical models were an initial approach, and later FE models allowed detailed studies of the complex phenomena related to these joints. Different studies have evaluated standard threaded joints in machinery and structures, being the thread symmetric. However, surgical screws employ asymmetric thread geometry, selected to improve the stress level generated in the bone. Despite the interest and widespread use, there is scarce documentation on the actual effect of this thread type. In this work, we discuss the results provided by FE models with detailed descriptions of the contacts comparing differences caused by the materials of the joint, the thread geometry and the thread’s three-dimensional helical effects. The complex contacts at the threaded surfaces cause intense demand on computational resources that often limits the studies including these joints. We analyze the results provided by one commercial software package to simplify the threaded joints. The comparison with detailed FE models allows a definition of the level of uncertainty and possible limitations of this type of simplifications, and helps in making suitable choices for complex applications.
Keywords