Nature Communications (Sep 2024)
Motor-free telerobotic endomicroscopy for steerable and programmable imaging in complex curved and localized areas
Abstract
Abstract Intraluminal epithelial abnormalities, potential precursors to significant conditions like cancer, necessitate early detection for improved prognosis. We present a motor-free telerobotic optical coherence tomography (OCT) endoscope that offers high-resolution intraluminal imaging and overcomes the limitations of traditional systems in navigating curved lumens. This system incorporates a compact magnetic rotor with a rotatable diametrically magnetized cylinder permanent magnet (RDPM) and a reflector, effectively mitigating thermal and electrical risks by utilizing an external magnetic field to maintain temperature increases below 0.5 °C and generated voltage under 0.02 mV. Additionally, a learning-based method corrects imaging distortions resulting from nonuniform rotational speeds. Demonstrating superior maneuverability, the device achieves steerable angles up to 110° and operates effectively in vivo, providing distortion-free 3D programmable imaging in mouse colons. This advancement represents a significant step towards guidewire-independent endomicroscopy, enhancing both safety and potential patient outcomes.