치위생과학회지 (Sep 2023)
Ethanol Extract of Smilax glabra Induces Apoptotic Cell Death in Human YD10B Oral Squamous Cell Carcinoma Cells
Abstract
Background: Smilax glabra has various pharmacological activities and is widely used as a herbal medicine. Although the incidence of oral cancer is low, the recurrence rate is high, and the 5-year survival rate is poor. It is necessary to search for anticancer drugs that increase the effect of cancer chemotherapy on heterogeneous oral tissues and reduce the side effects on normal cells. This study aimed to investigate the effects and mechanism of ethanol extract of Smilax glabra (EESG) as an anticancer drug for oral cancer.Methods: Smilax glabra root components extracted with 70% ethanol were used to analyze their effects on cancer cells. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay was performed for cytotoxicity analysis. Flow cytometry was performed to determine the cell cycle phase distribution. To observe apoptotic cells, terminal deoxynucleotidyl transferase dUTP nick end labeling and γH2AX were detected by fluorescence microscope. The protein levels of cleaved PARP and caspase were analyzed using western blotting. The activation of procaspase-3 was confirmed by measuring caspase-3 activity. Results: EESG was no cytotoxic to normal gingival fibroblast but was high in YD10B oral squamous cell carcinoma (OSCC) cells. EESG treatment increased the subdiploid DNA content of YD10B cells by assessing DNA content distribution. Chromatin condensation and DNA strand breaks increased in YD10B cells treated with EESG. EESG-treated YD10B cells had high Annexin V and low propidium iodide levels, confirming that early apoptosis was induced. In addition, increased levels of γH2AX foci, a marker of DNA damage, were observed in the nuclei of EESG-treated YD10B cells. The EESG-treated YD10B cells also exhibited decreased procaspase-3 and procaspase-9 levels, increased PARP cleavage and caspase-3 activity. Conclusion: These results indicate that EESG inhibited cancer cell proliferation by inducing apoptosis in YD10B OSCC cells.
Keywords