Parasites & Vectors (Mar 2024)
Characterization of environmental drivers influencing the abundance of Anopheles maculipennis complex in Northern Italy
Abstract
Abstract Background In Italy, malaria was endemic until the 1970s, when it was declared eradicated by WHO. Nowadays, with the persistence of competent mosquito populations, the effect of climate change, and increased possibility of importing malaria parasites from endemic counties due to growing migration, a malaria resurgence in Italy has become more likely. Hence, enhancing the understanding of the current distribution of the Anopheles maculipennis complex and the factors that influence the presence of this malaria vector is crucial, especially in Northern Italy, characterised by a high density of both human population and livestock. Methods To assess the presence and abundance of malaria vectors, a 4-year field survey in the plain areas of Lombardy and Emilia-Romagna region in Italy was conducted. Every sampling point was characterised in space by the land use in a 500-m radius and in time considering meteorological data collected in the short and long time periods before sampling. We combined the results of a linear regression model with a random forest analysis to understand the relative importance of the investigated niche dimensions in determining Anopheles mosquito presence and abundance. Results The estimated normalised variable importance indicates that rice fields were the most important land use class explaining the presence of Anopheles, followed by transitional woodlands and shrubland. Farm buildings were the third variable in terms of importance, likely because of the presence of animal shelters, followed by urbanised land. The two most important meteorological variables influencing the abundance of Anopheles in our study area were mean temperature in the 24 h before the sampling date and the sum of degree-days with temperature between 18 °C and 30 °C in the 14 days before the sampling date. Conclusions The results obtained in this study could be helpful in predicting the risk of autochthonous malaria transmission, based on local information on land cover classes that might facilitate the presence of malaria vectors and presence of short- and medium-term meteorological conditions favourable to mosquito development and activity. The results can support the design of vector control measures through environmental management. Graphical Abstract
Keywords